

Absorbent roadway pilot

Concept

Author : Renaud de Montaignac R&D Date : 26.09.2018

Project:

Concept of pavement for an absorbent roadway

Objective :

Propose a design of typical cross-section of a reservoir street to prevent flooding

Methods :

- Predesign for structural performance
- Predesign validation with hydraulic performance

Key results :

- 170 mm Concrete pavement with 2 base layers : 160 mm of ultrapervious concrete + 200 mm open graded drainage layer
- Assumption to be validated

Conclusions and remarks:

• Alternative RCC design are included in this report

1 Scope

A road section is regularly prone to flooding. This concept study aims to propose a typical cross section design to carry the water during heavy rainfall episode.

Location :

Example of flooding :

Concept – Absorbent Roadway Pilot - Philippines

2 Proposition

The concept is based on having a concrete pavement based on 2 pervious layer that are acting as reservoir. The schematic view of the concept is as follow:

3 Structural Design

Predesign is performed with StreetPave12 following Aashto and assumptions described on section 4.

CONCRETE PAVEMENT DESIGN						
Rigid ESALs =				9,554,914		
Composite Modulus of Subgrade Reaction (Static k-Value) =				225.1	MPa/m	
Top Layer	op Layer = Lean Concrete Subbase (LCB, Econocrete)				mm	
Layer 2	= Unstabilized Sub	Unstabilized Subbase			mm	
	Min. Required	Design	Max Joint		Failure	
	Thickness	Thickness	Spacing		Controlled By	
	mm	mm	m.		by	
*Doweled	151.38	155.00	3.26		Cracking	
Undoweled	166.37	170.00	3.57		Faulting	

LafargeHolcim

Concept - Absorbent Roadway Pilot - Philippines

4 Hydraulic design

Considering a maximum daily rainfall of 220 mm over the design life, water level in the reservoir has been studied over a 48 hour period. Considering some drainage pipe positioned in the OGDL that will perform to evacuate 10L/s.

Calculation performed showed that the water level is constantly under the surface of pervious. The reservoir effect is sufficient for this typical project without overflow of water.

5 Inputs and hypothesis

The Key assumptions in this study for pavement design are:

Design period

30 years

• Traffic (ESAL)

Concept - Absorbent Roadway Pilot - Philippines

ESAL = 9 500 000

For ESAL calculation, a 2% annual traffic growth rate is assumed for one 80 kN axle.

• Concrete Properties

Assumed to be conventional with flexural strength of 4.5 MPa and a modulus of elasticity of 30 500 MPa.

• Pervious concrete

Modulus >13000 MPa Porosity = 20%

• Open graded drainage layer

Modulus > 200 MPa Porosity = 40%

• Subgrade strength (CBR or k-value)

A CBR of 7 is assumed in this calculation.

• Pavement Performance (serviceability index)

Initial serviceability is 4.25 for RCC pavement. The terminal serviceability is assumed to be 2.25

Reliability

Reliability is set to 80%.

6 Calculation

Attached file:

- A1_StructuralPredesign_20180926.pdf
- A2_HydraulicPredesign_20180926.pdf

Concept - Absorbent Roadway Pilot - Philippines